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Abstract

Superconducting fluctuations in long and narrow strips made from ultrathin NbN
films, have been investigated. For large bias currents close to the critical current fluc-
tuations led to localized, temporary transitions into the normal conducting state,
which were detected as voltage transients developing between the strip ends. We
present models based on fluctuations in the Cooper pair density and current-assisted
thermal-unbinding of vortex-antivortex pairs, which explain the current and tem-
perature dependence of the experimental fluctuation rates.
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1 Introduction

One of the key properties of superconductors, zero resistance, has always been
in the focus with regard to possible applications of superconducting materi-
als. The outcome of these efforts can be seen in the wide-spread use of MRI-
scanners and their superconducting magnets in hospitals, for example. Not
least due to technological advances in thin film preparation and micro- and
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nano-structuring methods during the last decade a whole range of novel su-
perconducting devices exploiting various aspects of superconductivity have
become technological feasible. Without being exhaustive examples are super-
conducting quantum interference devices [1,2], quantum computing [3] and
quantum detectors [4]. For all of these devices to offer superior advantages
compared to more conventional semiconducting devices low noise levels are
one of several prerequisites. For macroscopic superconductors noise levels are
usually very low because of the low operating temperatures and the formation
of the superconducting energy gap ∆(T ). However, as the size of the super-
conductor becomes comparable to the superconducting coherence length ξ(T )
in one or more dimensions fluctuation effects play an increasingly important
role [5] in the overall performance of the device.

In this letter we will discuss fluctuation effects in superconducting nano-strips
near the I-T phase transition. In previous studies fluctuations in supercon-
ductors with reduced dimensions have often been done in the limit of small
applied currents [6]. In contrast, we consider fluctuations in the opposite limit
of very high applied currents [7] close to the critical current Ic(T ), a situa-
tion that is often encountered in real applications, e.g. transition edge sensors
[8]. We will consider two independent thermodynamically driven fluctuation
types, which may lead to a localized and temporary transition to the normal
state. One type are fluctuations of the number of superconducting charge car-
riers, i.e. Cooper pairs. Macroscopically this may be expressed as localized
fluctuations in the critical current density. If the critical current density drops
below the applied current density, the device will switch into a temporary
resistive state. The other type of fluctuations are temporarily created bound
vortex-antivortex pairs (VAPs). Under the acting Lorentz force due to the
relatively high applied current density such bound vortices may unbind and
move towards opposite edges of the strip [7]. Such vortex motion also leads to a
resistive state. In both cases the fluctuations are detected as voltage transients
developing between the meander ends.

2 Fluctuations in the Cooper-pair density

The number density of Cooper pairs in superconductors are subject to ther-
mally activated fluctuations [9,10]. To evaluate their role in the voltage pulse
rate in these superconducting strips we make use of a recently proposed refine-
ment of the hotspot model in superconducting single photon detectors [11].
Suppose in a disc-like volume V with thickness equal to the film thickness
d < ξ(T ) and radius a, ξ(T ) ≤ 2a ≤ w, the number of Cooper pairs Ns

decreases by δNs, see also Fig. 1. Far from the fluctuation site and at tempera-
tures well below the critical temperature Tc the current density is proportional
to the velocity of the superconducting charge carriers [6], thus the current may
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Fig. 1. Schematic drawing of the refined hotspot model. The grey shaded volume
is a cloud with reduced Cooper-pair density ns − δns. If the density is low enough
such the mean pair velocity v′s exceeds the critical velocity v∗s in a cross-section
with longitudinal extension ξ or larger, this cross-section switches into the normal
conducting state.

be expressed as I = nsvs 2e wd, with ns the number of Cooper pairs per unit
volume, vs the mean velocity of Cooper pairs and 2e their charge. Further-
more, we assume the current density to be homogeneous over the cross-section
of the strip, because of the effective magnetic penetration length Λ = λL(0)2/d
being much larger than the strip width and thickness. For a cross-section in-
cluding the fluctuation volume the Cooper pair density is not homogeneous,
anymore. However, one can easily show within Ginzburg-Landau (GL) theory
that the supercurrent redistributes to keep the mean velocity of the supercon-
ducting charge carriers the same all over the cross-section as long as there is
no magnetic flux linked to the fluctuation. Thus, the current is now given by
I = ns,effv′

s 2e wd, with ns,eff = ns − δNs/V and v′

s > vs. The minimum critical
fluctuation that drives the cross-section normal conducting is then given by
the condition that v′

s is equal to the critical velocity vs
∗ ≈ Ic/(ns wd), Ic is

the temperature dependent critical current. Using simple algebra this can be
converted into the minimum number of Cooper pairs that need to be destroyed
within the fluctuation volume

δN∗

s =
π

2
awd ns

(

1 −
I

Ic

)

(1)

≈
π

4
awd N0∆(I, T )

(

1 −
I

Ic

)

, (2)

where in Eq. (2) we have used ns ≈ (N0/2)∆(I, T ) for T ≪ Tc, with N0 the
density of states at the Fermi energy and ∆(I, T ) the superconducting energy
gap or pairing potential.
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The thermodynamic probability for such a fluctuation is given by exp[−∆F/kBT ]
using the change in free energy ∆F associated with the fluctuation, kB is the
Boltzmann constant and T the temperature. For the change in free energy we
used the minimum excitation energy Emin(I, T ) required to break one Cooper
pair times the number of pairs broken:

∆F = δNsEmin(I, T ) (3)

with the minimum excitation energy given as

Emin(I, T )=∆(I, T )
(

1 −
I

Ic

)

(4)

=∆0

[

1 −

(

T

Tc

)4
]

1
2
[

1 − α
(

I

Ic

)2
]

(

1 −
I

Ic

)

.

∆0 = 1.76kBTc is the BCS energy gap at zero temperature and the following
term is a relatively simple analytical approximation to the BCS temperature
dependence of the energy gap. An applied bias current further reduces the
energy gap or pairing potential [12,13]. This contribution is generally of mi-
nor importance except at temperatures very close to Tc. We account for this
contribution by the phenomenological parameter α = 0.03(1− T/Tc)

−0.5. The
dominant current-induced effect is a shift of the Fermi sphere in k-space which
reduces the minimum excitation energy Emin = ∆−pFvs, pF is the momentum
corresponding to the Fermi-energy [6]. Furthermore ∆ ≈ pFv∗

s and using the
above mentioned proportionality between the superconducting current and
the speed of its carriers, we arrive at Emin ∝ (1 − I/Ic).

Experimentally measured fluctuation rates are not only caused by minimum
fluctuations needed to trigger a voltage pulse but by all fluctuations tem-
porarily destroying more Cooper pairs than δN∗

s . Although larger fluctua-
tions require more energy and are less frequent we take the integral over
thermodynamic probabilities for fluctuations from the minimum number δN∗

s

to the maximum number ns πa2d. Furthermore, one has to take a second
integral over the fluctuation volume given by the radius a. The minimum
volume is given when all Cooper pairs within that volume have to be bro-
ken in order to cause a voltage pulse. It follows that the minimum radius is
given by amin = (1 − I/Ic)w/2. If the bias current is close enough to Ic the
minimum radius amin becomes less than ξ(T ). Because variations on a scale
smaller than ξ(T ) do not influence superconductivity an absolute minimum
of amin = ξ(T )/2 was set. As the upper limit of the fluctuation volume we
defined the strip width w. Then, the overall thermodynamic probability for a
dark count event caused by fluctuations of the number of Cooper pairs results
as

P (I, T ) =
∫ w/2

amin

∫ ns πa2d

δN∗

s

Lw

a2
exp

(

−
∆F

kBT

)

dδNs da, (5)
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with

amin =







(1 − I/Ic)
w
2

for (1 − I/Ic)w ≥ ξ(T )
ξ(T )

2
else.

(6)

Fluctuations of different size a are weighted with the number of independent
fluctuation sites Lw/a2. The fluctuation rate is obtained by multiplying the
probability of Eq. (5) with an attempt rate Ω0,cp. In general, the attempt rate
also depends on the the bias current, temperature and size of the fluctuations.
Lacking a well-founded theoretical expression for the attempt rate we use it
as an adjustable parameter to fit the experimental data.

3 Thermal unbinding of vortex-antivortex pairs

Another type of fluctuations is intimately linked to the Berezinskii–Kosterlitz–
Thouless (BKT) transition in thin superconducting films [14,15,16]. Below the
BCS transition temperature Tc in zero magnetic field excitations of the form of
bound VAPs with no net flux may exist in two-dimensional films. Between the
BKT transition temperature TBKT and Tc bound pairs and thermally activated
unbound vortices coexist. In the absence of pinning the unbound vortices lead
to a finite resistance even below Tc. If a transport current is applied it exerts a
Lorentz force which is opposite in direction for the two partners of a VAP. Thus
no net force acts on a bound pair, but it leads to a preferred orientation of the
pair and a reduction of the binding energy. Consequently, the combined action
of the applied current and thermal activation may lead to pair-unbinding even
below TBKT. This current-assisted thermal unbinding (CATU) of VAPs may
in turn be an important source of voltage pulses in the superconducting strips
under investigation and is explored in more detail below.

Whether or not the above sketched BKT transition is an appropriate model
for such NbN strips one should make sure that the strips fall within the two-
dimensional (2D) limit and vortices can form in the strips. The NbN films have
typical coherence lengths extrapolated to zero temperature of approximately
8 nm. With minimum strip widths of about 80 nm, ξ(T ) < w for all tempera-
tures except very close to Tc. Likharev [17] gives a criterium for the minimum
strip width for the existence of vortices: w ≥ 4.4 ξ(T ). This more stringent
criterium is also fulfilled for the temperatures of interest, i.e. for which fluc-
tuation rates were measured. These theoretical considerations are backed by
an analysis of the resistive transition of a sample shown in Fig. 2 together
with appropriate least-square fits for the different temperature intervals (solid
lines). The resistance data was collected with a standard 4-wire setup and
the sample immersed in liquid or gaseous helium at temperatures below and
above 4.2 K, respectively. The rounding of the transition above Tc is assumed
to be due to fluctuation conductivity of the Aslamazov-Larkin type [18] in a
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Fig. 2. Resistive transition of a 5 nm thick NbN meander. The solid lines are
least-square fits for the various temperature intervals as described in the text. The
BCS and BKT transition temperatures are indicated by arrows.

dirty superconducting 2D-film with a high sheet resistance

σ2D =
1

16

e2

~d

Tc

T − Tc
, (7)

with e the elementary charge and ~ = h/2π Planck’s constant. Fitting of the
resistance data in the relevant temperature region using Eq. (7) allowed to
extract the transition temperature Tc = 4.81 K and the normal state sheet
resistance Rs = 1.4 kΩ. Below Tc the resistance is dominated by thermally
unbound VAPs and the BKT theory gives its temperature dependence as [19]

R ∝ exp

[

−2
(

b
Tc − T

T − TBKT

)1/2
]

, (8)

with b a parameter from the theory. For an infinite 2D-film the resistance
should vanish below the BKT transition temperature, which turned out to be
TBKT = 4.14 K for this meander. In a finite sample, however, free vortices are
present even below TBKT and Mooij [19] gives the following relation for the
sheet resistance:

Rs

RN
= 2π y(lw) exp(−2lw), (9)

with a length scale lw = ln[w/ξ(T )] and y(lw) is the pair excitation probability
containing the temperature dependence. Following some of the simplifications
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in Ref. [19] Eq. (9) can be expressed as

Rs ≈ 2πRN

(

ξ(T )

w

)η

(10)

and the exponent η is of the order of 1. Using the simple GL-relation ξ(T ) =
ξ0(1 − T/Tc)

−1/2 a best fit was obtained for η = 3. The temperature in-
dependent prefactor of the least-square fit equaling 16.4 also compares very
well with the theoretical value 2πRN(ξ0/w)3 ≈ 12. The above sketched anal-
ysis gives a self-consistent description of the resistive transition in terms of
a BKT-transition in a finite 2D superconducting film, thus we conclude that
VAPs do exist in these structures 2 .

Coming back to the question of how VAPs might influence the count rates
of random voltage pulses, we note that the count rates were measured at
temperatures well below TBKT. Free vortices present due to finite size effects
will be neglected. Their average number was estimated from the areal density
based on the resistance measurement and turned out to be much smaller than
the number of unbound vortices due to the high bias current. As mentioned
above VAPs will orientate themselves with respect to the bias current near
the orientation with minimum binding energy

Ub = 2µc +
A(T )

ε(lj)
(lj − 1). (11)

Here lj = ln(2.6jc/j) is a current scale, jc the critical current density and j the
applied current density, and ε(lj) is a renormalization factor close to unity. The
temperature dependent energy scale A(T ) = (π2

~/2e2Rs)∆(T ) tanh[∆(T )/kBT ]
has to be calculated from device parameters, where ∆(T ) is the superconduct-
ing energy gap at zero current, and µc is the core energy of one vortex. The
unbinding process can be seen as thermal excitation requiring the energy Ub.
After the thermal unbinding vortex and antivortex are accelerated due Lorentz
forces and move in opposite directions towards the strip edges where they an-
nihilate. Assuming free flux-flow according to the Bardeen-Stephen model the
voltage signal developing between the strip ends is comparable in height to the
voltage pulses caused by the thermodynamic fluctuations of the order param-
eter described above. Also, the pulse duration is expected to be of the same
order of about 1 ns or less, so that these two fluctuation modes are not easily
discriminated.

For a thermally activated unbinding process the count rate should be pro-
portional to exp(−Ub/kBT ). The core energy µc in Eq. (11) may be a non-

2 In this context open questions remain with regard to the Likharev criterium,
which prohibits vortices for a non-negligible temperature range between Tc and
TBKT, and the role of edge barriers in narrow superconducting strips expelling vor-
tices [20].
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negligible contribution to Ub. Generally, it is assumed to be approximately
proportional to the energy scale A(T ), i.e. µc ≈ A(T )/γ, γ = const. Then the
count rate may be expressed as

ΓBKT(I, T ) = C
(

I

2.6Ic

)

1
ε(lj )

A(T )
kBT

, (12)

with C = Ω0,BKT exp[βA(T )/kBT ], Ω0,BKT the attempt rate and β = [γ −

2ε(lj)]/[γε(lj)] a parameter of order unity.

4 Experimental details

The samples were made from a d = 5 nm thick NbN film on a sapphire
substrate. The film was prepared by dc magnetron sputtering in an Ar/N2

gas mixture. The N2 concentration was reduced with respect to the optimal
concentration for a stoichiometric composition. Together with high sputtering
rates (1.2 nm/s) and the substrate not being heated this resulted in films with
a reduced N-content and a high degree of disorder. Consequently, the films
had critical temperatures Tc approximately 5 to 6 K, only about one third of
the critical temperature in bulk NbN. Using a combination of electron-beam
and photolithography the films were structured by reactive ion etching into
a meander covering an area of roughly 4 × 4 µm2. The device used for the
fluctuation measurements had a strip width w = 84 nm and a total length
L = 36 µm. Partial damage due to the etching process caused nonsupercon-
ducting areas at the strip edges inferred from independent measurements to
be about 4 nm thick. Also, thin layers (0.4 nm) at the top and bottom of
the film are assumed to be normal conducting. Proximity effects associated
with these normal conducting areas lead to a further reduction of the critical
temperature to the above mentioned 4.81 K for the present sample. A zero
temperature coherence length ξ0 = 8.5 nm was deduced from magnetocon-
ductivity measurements and the London penetration depth λL(0) & 300 nm
was estimated [21,22]. The electronic density of states at the Fermi energy
N0 = 2.2 · 1024 m−3 K−1 was deduced from Einstein’s relation N0 = 1/(e2ρD),
with the diffusion coefficient D = 0.35 cm2 s−1 determined from Bc2(T ) near
Tc.

The device was thermally anchored to the cold plate of a 4He bath cryostat.
The temperature was controlled via the vapor pressure of the helium bath. The
bias current was supplied by a low-noise custom-made biasbox in constant-
voltage mode. An additional low-pass filter at the entrance to the cryostat and
a voltage divider inside, close to the device, allowed to adjust the bias cur-
rent reliably, even very close to Ic(T ). Fluctuation events were registered as hf
voltage signals which were passed on to a microwave amplifier chain with an
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effective band pass from 0.1 to 1.6 GHz and a total gain ≈ 50 dB. To reduce
parasitic noise the first stage was a cryogenic amplifier with a very low noise
temperature of 6 K. Amplified voltage pulses were fed into either a digital 250
MHz bandwidth/1 GHz sampling rate oscilloscope or a 200 MHz bandwidth
voltage-level counter. NbN meanders like to one used in this investigation can
be utilized as single photon detectors with a quantum efficiency of ≈ 10% in
the visible and nearinfrared spectral range [23,24]. Absorbed photons produce
voltage signals very similar to the pulses caused by those fluctuations consid-
ered in this paper, in fact, they may be the limiting factor of the sensitivity
of such detectors. Intrinsic to these detectors is a cutoff wavelength such that
only photons with shorter wavelengths are detected. Assuming blackbody ra-
diation from the surfaces facing the meander (T ≈ 4 and 77 K, respectively),
the number of detectable photons crossing the meander area is estimated to
less than 10 photons/s. Considering a maximum detection efficiency of a few
percent and the fact that the cut-off wavelength decreases with decreasing
bias current [11,24], the background photons can be safely neglected for all
measurements.

5 Results and discussion

Voltage pulse rates were recorded as a function of the applied bias current
at fixed temperatures. In Fig. 3 data for three different temperatures T =
3.6, 3.3, and 2.85 K are shown. At the highest temperature (squares in Fig.
3) the data nearly follow an exponential dependence. However, as the temper-
ature is reduced, the data deviate more and more from such a simple relation
and open up the question as to the origin of such a temperature and current
dependence. One might think of various mechanisms being able to produce
voltage pulses similar to those observed in our experiments, though some of
which can be ruled out. Photons of sufficient energy are certainly capable
of causing such signals. However, estimates as outlined in the previous sec-
tion quickly show that background radiation is many orders of magnitude too
low to give any significant contribution to the observed count rates. Thermal
[25,26] and quantum phase slips [27,28] are also expected to play a minor role,
since the strip width is still considerably larger than the coherence length. Al-
though great efforts have been made to reduce noise superimposed on the bias
current contributions from current noise cannot be ruled out so easily. Espe-
cially for bias currents extremely close to Ic current noise will add to the dark
count rates as well as temperature fluctuations and associated fluctuations in
Ic. However, the observed temperature dependence is not easily explained by
such extrinsic noise sources. Therefore, we tried to analyze the experimental
data in light of the fluctuation modes discussed in the previous Sec. 2 and 3.

The solid lines in Fig. 3 are least-square fits of Eq. 12 to the experimental data.
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Fig. 3. Dark count rates vs bias current for temperatures T = 3.6, 3.3 and 2.85
K from left to right. The solid lines are least-square fits according to Eq. 12. The
dashed line includes a phenomenological currentdependence of ε(lj).

The energy scale A(T ) was calculated independently for each temperature
and ε(lj) and C were taken as current independent fitting parameters. For
the highest temperature of T = 3.6 K this results in a satisfactory fit with
parameters ε(lj) = 0.67 and an attempt rate Ω0,BKT = 9 · 109 s−1, assuming
β ≈ 1. At lower temperatures this approach works at low currents, only, but
still with comparable parameters ε(lj) = 0.85, Ω0,BKT = 2.5 · 109 s−1 and
ε(lj) = 1.0, Ω0,BKT = 3.8 · 1010 s−1 at T = 3.3 and 2.85 K, respectively. So
far, the current dependence of ε(lj), indicated by the subscript j, has been
neglected. We have made this simplification partly because the BKT-theory
makes only vague statements on its current dependence. Yet, if one allows
for a current dependence of ε(lj), albeit phenomenologically, the fit at low
temperatures can be substantially improved. The dashed curve in Fig. 3 was
obtained for ε decreasing from 1.0 at low currents to about 0.75 very close
to Ic. Even though the resulting curve describes the data very well, we would
like to stress that it is not based on a sound theoretical model. Alternatively,
one might think of mechanisms that set a limit to the count rate caused by
the unbinding process in this BKT-model, which would also manifest itself in
a kink similar to that observed.

As the bias current approaches the critical current the count rates for all
temperatures exhibit an upturn contradictory to expectations based on the
unbinding of VAPs. This is when fluctuations of the Cooper pair density may
come into play. Count rates based on Eq. 5 have to be calculated numerically
and fitted to the experimental data by adjusting the attempt rate Ω0,cp. In
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Fig. 4. Dark count rate vs reduced bias current at T = 3.6 K. The dashed line is the
least-square fit of Fig. 3 and the dash-dotted curve the dark count rate obtained for
fluctuations of the superconducting order parameter. The solid curve is the sum of
these two contributions.

doing so, it soon becomes apparent that these fluctuations may only be of
importance for bias currents very close to the critical current, exceeding ≈

0.9Ic. In Fig. 4 the count rate at 3.6 K is shown versus the reduced current I/Ic.
The dashed curve is the best fit according to VAP unbinding model and the
dash-dotted curve is the contribution from the Cooper pair fluctuations using
an attempt rate Ω0,cp = 1.6·108 s−1. The sum of both fluctuation modes extents
the excellent agreement between experiment and theoretical description up to
the highest applied currents I/Ic ≈ 0.98. It has to be noted however, that
for bias currents sufficiently close to Ic current noise will certainly add to the
observed dark count rate and the observed upturn may, at least in part, be
caused by this noise contribution.

6 Conclusions

In summary, we have described current and temperature dependent fluctua-
tion effects in superconducting nanostructures, which were detected as voltage
pulses in long meander lines. Current-assisted thermal unbinding of vortex-
antivortex pairs turned out to be the the most likely source of count rates
over most of the current range. For high bias currents extremely close to the
critical current fluctuations in the number density of Cooper pairs need to be
considered, as well. For the application of single-photon counters and other
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low-dimensional superconducting devices the detailed knowledge of the ori-
gins and control of superconducting fluctuations will be an important issue
to choose the optimum operating conditions and additional investigations will
be necessary. We are very grateful to D. Golubev for stimulating discussions.
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multiple loop quantum interferometers, IEEE Trans. Appl. Supercond. 11
(2001) 1271.

[3] Y. Nakamura, Y. A. Pashkin, J. S. Tsai, Coherent control of macroscopic
quantum states in a single-cooper-pair box, Nature 398 (1999) 786.

[4] A. Peacock, P. Verhoeve, N. Rando, A. v. Dordrecht, B. G. Taylor, C. Erd,
M. A. C. Perryman, R. Venn, J. Howlett, D. J. Goldie, M. Lumley, J. Wallis,
Single optical photon detection with a superconducting tunnel junction, Nature
381 (1996) 135.

[5] W. J. Skocpol, M. Tinkham, Fluctuations near superconducting phase
transitions, Rep. Prog. Phys. 38 (1975) 1049.

[6] M. Tinkham, Introduction to Superconductivity, 2nd Edition, McGraw-Hill,
Inc., New York, 1996.

[7] C. M. Knoedler, R. F. Voss, Voltage noise measurement of the vortex mean free
path in superconducting granular tin films, Phys. Rev. B 26 (1982) 449.

[8] A. T. Lee, P. L. Richards, S. W. Nam, B. Cabrera, K. D. Irwin, A
superconducting bolometer with strong electrothermal feedback, Appl. Phys.
Lett. 69 (1996) 1801.

[9] C. M. Wilson, L. Frunzio, D. E. Prober, Time-resolved measurements of
thermodynamic fluctuations of the particle number in a nondegenerate Fermi
gas, Phys. Rev. Lett. 87 (2001) 067004.

[10] C. M. Wilson, D. E. Prober, Quasiparticle number fluctuations in
superconductors, Phys. Rev. B 69 (2004) 094524.
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